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Abstract—The remarkable advances of Machine Learning (ML) have spurred an increasing demand for ML-as-a-Service on public
cloud: developers train and publish ML models as online services to provide low-latency inference for dynamic queries. The primary
challenge of ML model serving is to meet the response-time Service-Level Objectives (SLOs) of inference workloads while minimizing
serving cost. In this paper, we proposes MArk (Model Ark), a general-purpose inference serving system, to tackle the dual challenge of
SLO compliance and cost effectiveness. MArk employs three design choices tailored to inference workload. First, MArk dynamically
batches requests and opportunistically serves them using expensive hardware accelerators (e.g., GPU) for improved performance-cost
ratio. Second, instead of relying on feedback control scaling or over-provisioning to serve dynamic workload, which can be too slow or
too expensive, MArk employs predictive autoscaling to hide the provisioning latency at low cost. Third, given the stateless nature of
inference serving, MArk exploits the flexible, yet costly serverless instances to cover occasional load spikes that are hard to predict. We
evaluated the performance of MArk using several state-of-the-art ML models trained in TensorFlow, MXNet, and Keras. Compared with
the premier industrial ML serving platform SageMaker, MArk reduces the serving cost up to 7.8× while achieving even better latency
performance.

Index Terms—Machine-Learning-as-a-Service, inference serving, SLO awareness, cost minimization, cloud computing
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1 INTRODUCTION

Machine Learning (ML) technologies have advanced by
leaps and bounds in the past few years, leading to a bur-
geoning demand of MLaaS (Machine-Learning-as-a-Service)
systems on the public cloud. A typical workflow of MLaaS
system covers the two phases of ML, training and inference.
In the training phase, developers build ML models from the
training dataset using an array of ML frameworks. Efficient
training in cloud environments has been well explored in
the recent work [53], [67], [89]. In the inference phase, the
trained models are published as online cloud services and
can be queried by users with new input. The service makes
prediction decisions (inference) for a given input using the
trained model [39] (e.g., recognizing human faces in a given
photo) and returns the inference results to the querier.

Unlike training which runs offline and may take hours to
days to complete, inference must be performed in real-time
over dynamic queries with stringent latency requirements
(e.g., tens to hundreds of milliseconds per query). These
requirements are often specified as the response-time Service-
Level Objectives (SLOs) [51], e.g., at least 98% of inference
queries must be served in 200 ms. Failing to comply with
the SLOs results in compromised quality of service or even
financial loss, e.g., end users will not be charged for queries
not responded in time. Therefore, an ML model serving sys-
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tem should strive to meet the target SLOs while minimizing
the cost of provisioning the serving instances in the cloud.

However, achieving these two objectives can be chal-
lenging. Cloud providers like Amazon [16], Google [47],
and Microsoft [63] offer a wide variety of service provi-
sioning options, ranging from VMs and containers to the
emerging serverless functions. There is a wide configuration
space for each provisioning option (e.g., CPU, memory, and
hardware accelerators) coupled with diverse pricing models
offering flexible tradeoffs between service guarantees and
cost savings (e.g., on-demand and spot instances [22]). A
key challenge of provisioning model serving in the cloud
is: how does a serving system choose from a bewildering
array of cloud services to provide low-latency, cost-effective
inference at scale?

Unfortunately, there is no general guidance provided by
the cloud providers, nor has it been studied in previous
research [15], [34], [52], [55], [69], [70], [74], [82] which
mainly targets general applications. To bridge this gap, we
perform comprehensive measurement studies of inference
serving in AWS [16] and Google Cloud [47] using VMs
(IaaS), containers (CaaS), and serverless functions (FaaS).
We briefly summarize our three key findings as follows.

First, among the three alternatives, IaaS (Infrastructure-
as-a-Service) provides the best performance-cost ratio for
inference serving, but it requires long instance provisioning
latency and is unable to adapt to the changing workload
timely. CaaS (Container-as-a-Service) suffers from a similar,
yet less severe, problem with even worse performance-cost
ratio. Compared to IaaS and CaaS, FaaS (Function-as-a-
Service) scales much faster but is the most costly.

Second, inference serving benefits from batching greatly
when performed using costly hardware accelerators (e.g.,
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GPUs). Nonetheless, the benefits are not always guaranteed
but critically depend on the batch size control knobs and
their interactions with query arrivals: when there is not
enough load, serving inference queries using GPUs is not
economically justified. Therefore, a serving system should
judiciously determine when to scale up from CPU to GPU
instances and how to perform batching over GPUs.

Third, ML inference usually performs stateless compu-
tations. This opens up an opportunity of using serverless
functions as a handover service when the system is provision-
ing new instances for scaling up/out. In addition, many ML
models, especially deep learning, have deterministic inference
time [51], [86]—they take fixed-size input vectors and have
input-independent control flows. This also brings an oppor-
tunity for better resource planing and latency control.

Based on these observations, in this paper, we propose
MArk (Model Ark), a low-latency, cost-effective inference
serving system on the public cloud. MArk takes advantage
of the unique characteristics of ML model serving while
addressing the distinctive challenges it raises. In particular,
MArk allows developers to specify the target SLOs through
common APIs. To attain high performance-cost ratio, it uses
IaaS as the primary means of provisioning while utilizing
FaaS to quickly fill the service gap when the system is un-
dergoing horizontal/vertical scaling. MArk uses predictive
scaling to mask the instance provisioning latency in IaaS.
Unpredicted load spikes are covered by serverless functions
to reduce over-provisioning. Based on the predicted work-
load, MArk opportunistically uses costly GPU instances to
serve batched queries for improved performance-cost ratio.
To further cut costs, MArk also supports the use of heavily
discounted, yet interruptible instances (e.g., spot instances)
with an interruption-tolerant mechanism that uses transient
servers to handle instance interruptions at low cost.

We have prototyped MArk as a general-purpose serving
platform in AWS [16] with pluggable backend model servers
supporting a range of ML frameworks such as Tensorflow
Serving [66], MXNet Model Server [32], and customized
Keras [38] server with Theano [35] backend. We have eval-
uated MArk with several state-of-the-art ML models for
image recognition, language modeling, and machine trans-
lation: Inception-V3 [79], NASNet [90], LSTM-ptb [62], and
OpenNMT [58]. The results show that MArk yields up to
7.8× cost reduction with comparable or even shorter latency
than the state-of-the-practice solution SageMaker [18], while
complying with the predefined SLO requirements. MArk is
open-sourced for public access.1

2 BACKGROUND AND RELATED WORK

In this section, we survey related work on model serv-
ing systems and autoscaling techniques. We also provide
background information on cloud services and their pricing
models.

2.1 Machine Learning Model Serving

A wide array of ML inference serving systems have been
proposed to facilitate model deployment [7], [8], [32], [39],

1. https://github.com/marcoszh/MArk-Project

[66], [84]. These systems place the trained models in con-
tainers and handle model inference requests through REST
APIs. For example, systems like Clipper [39], Rafiki [84],
and MXNet Model Server [32] host each model in a separate
Docker [4] container to ensure process isolation; TensorFlow
Serving [66] deploy models as servables, which are executed
as black box containers and can also be used for version
management. In order to provide low-latency inference,
these systems employ a number of model-agnostic opti-
mizations such as batching, buffering, and caching [39],
while relying on conventional container orchestration for
scaling. The recently proposed white box model serving [60]
enables model-specific optimizations with fine-grained re-
source sharing and parameter re-use.

However, existing inference serving systems mainly fo-
cus on streamlining model deployment in server machines,
without addressing the scalability and cost minimization
issues for model serving on the public cloud. Microsoft’s
Swayam [51] is among a few inference serving systems that
focus on infrastructure scalability and resource efficiency.
Yet Swayam is a proprietary system for model deployment
in Microsoft’s private MLaaS clusters. Nexus [75] is a GPU
cluster engine that optimizes DNN inference throughput on
a private cluster through techniques including dependency-
aware scheduling, model fragmentation, and batching. The
objective of Nexus is to increase the utilization of a pre-
allocated GPU cluster dedicated for inference serving while
we aspire to reduce the provisioning cost in public cloud.
Amazon’s SageMaker [18] offers scalable model serving

over EC2 [1] instances. However, it only supports IaaS
provisioning and requires manual specification of the provi-
sioning instances. SageMaker is also agnostic to the response-
time SLOs and serves inference queries in a best-effort
manner. In contrast, MArk meets SLOs at low cost by
choosing from a complex selection of provisioning services
in AWS [16].

2.2 Autoscaling Dynamic Workload in Cloud

There is a large body of work on autoscaling dynamic
workload for general web services hosted in the cloud. We
refer to [70] for an extensive survey of this topic and com-
pare some related work with MArk in Table 1. In general,
there are two scaling approaches used to serve dynamic
workload.

Feedback control scaling. This approach monitors hosted
applications and reactively adjusts resource provisioning
based on the monitored metrics (e.g., utilization, through-
put, and latency). Feedback control scaling is adopted in
many industrial serving platforms to autoscale dynamic
workload, e.g., SageMaker in AWS [17], [18] and Kuber-
netes in Google Cloud [48], [49]. These systems perform
scaling following some customized rules such as “adding
two instances if CPU utilization reaches 70%,” or tracking
a target such as “maintaining 100 queries per minute per
instance” [20].

Feedback control scaling makes no prediction and is
easy to implement. However, owing to its reactive nature, it
incurs long instance provisioning delay when used to serve
the changing workload [70]. Over-provisioning is therefore
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TABLE 1: A comparison of MArk and existing work on autoscaling dynamic workload in the cloud.

Autoscaler Scaling approach Means of Provisioning SLO-aware Heterogeneous
instances

Interruptible
instances

Hardware ac-
celerators

MBRP [42] Feedback control Private cluster X X × ×
Ali-Eldin et al. [14] Predictive IaaS × × × ×
Barrett et al. [34] Predictive IaaS × × × ×
Urgaonkar et al. [82] Predictive IaaS X × × ×
Han et al. [52] Predictive IaaS X × × ×
Qu et al. [69] Feedback control IaaS × X X ×
SpotCheck [74] – IaaS × X X ×
He et al. [55] – IaaS × X X ×
Swayam [51] Predictive Private cluster X × – ×
SageMaker [18] Feedback control IaaS × × × X
MArk Predictive IaaS and FaaS X X X X

needed in case of load spikes. For example, SageMaker rec-
ommends to start with 100% over-provisioning and adjust
thereafter [21]. As ML model serving is often compute-
intensive and requires costly CPU/GPU instances, solely
relying on over-provisioning is economically not viable.

Predictive scaling. This approach makes predictions about
the future workload, based on which it proactively autoscales
the serving instances to reduce over-provisioning. Predic-
tive scaling has been widely employed to serve general
workload (e.g., web services and VM demands) using a
number of time-series-based prediction algorithms, such as
linear regression [36], autoregressive models [43], [72], and
neural networks [26], [64], [68], [77]. Predictive scaling is
often complemented with feedback control scaling, where
the two approaches operate at different time scales [52], [82].
For example, predictive scaling can be used for resource
planning in hours to days, with reactive provisioning oper-
ating in minutes to respond to flash crowds or unexpected
deviations from long-term behaviors [82].

However, due to the mismatch of target workload, exist-
ing predictive autoscalers do not work well for ML model
serving. As summarized in Table 1, they only consider pro-
visioning over homogeneous instances on IaaS cloud [14],
[34], [52], [82]. They also do not support hardware acceler-
ators (e.g., GPUs) and cheaper, yet interruptible instances
(e.g., spot servers), hence missing opportunities of cutting
provisioning costs. In addition, many predictive autoscalers
are unaware of the response-time SLOs and only provide
best-effort services [14], [34]. As a result, such approach is
seldomly adopted in real world deployment.

2.3 Cloud Provisioning Services

Compared with private clusters, model serving on public
clouds is far more complex. Leading cloud platforms such
as AWS [16], Google Cloud [47], and Microsoft Azure [63]
offer a variety of provisioning services that can be used for
model serving. We briefly survey these services, with a main
focus on AWS.

Infrastructure-as-a-Service (IaaS). With IaaS, cloud cus-
tomers run virtual instances (VMs) of various configurations
in terms of CPUs, memory, storage, network, and accel-
erators (e.g., GPU, TPU, and FPGA). Customers can then
configure and deploy ML model serving softwares [32], [39],
[80] on running instances to serve model inference requests.

IaaS cloud provides flexible pricing options to allow
customers to choose between service guarantees and cost

savings. Taking Amazon EC2 [1] as an example, customers
can run instances on-demand and pay for compute capacity
by per hour or per second depending on the instance types.
Alternatively, customers can run spot instances at steep dis-
counts of the on-demand price, under the condition that a
running spot instance can be interrupted indefinitely [22]. EC2
also allows customers to reserve an instance in a long term
by making an upfront payment [29]. During the reservation
period, the instance usage is subject to a heavy discount
compared to the on-demand price. All three IaaS pricing
options are also available in Google Cloud [47].

Container-as-a-Service (CaaS). With CaaS (e.g., Amazon
ECS [2] and Google Kubernetes Engine [6]), customers
encapsulate services and implementations in containers
(Docker images [4]), and run containers with specified re-
source configurations. Compared with IaaS, CaaS simplifies
software configurations and deployment without the com-
plexity of maintaining the server infrastructure. In Amazon
ECS, users pay for the container capacity by per second,
where the pricing is based on requested vCPU cores and
memory.

Function-as-a-Service (FaaS). With FaaS, customers run
applications as serverless functions (e.g., AWS Lambda [3]
and Google Cloud Functions [5]) and let the cloud plat-
form to handle resource provisioning and management. In
Lambda, customers can only specify the memory allocation
for a function instance, and pay for the total number of
requests and the compute time [3]. FaaS is particularly
suitable for stateless computations and has become popular
in serving ML models [81].

Given a complex selection of provisioning options in
the public cloud, which one should be used for ML model
serving? We answer this question in the next section.

3 CHARACTERIZING MODEL SERVING ON THE
CLOUD

In this section, we characterize ML serving performance
with IaaS, CaaS, and FaaS as well as their configuration
space. Our characterizations are mainly based on AWS [16]
(§3.1-3.4), a leading cloud platform offering the most di-
versified service options. We validate the major results in
Google Cloud [47] where possible (§3.5).

3.1 What service to use: IaaS, CaaS, or FaaS?
We choose three representative ML models, Inception-
v3 [79], Inception-ResNet [78], and OpenNMT-ende [58], for
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TABLE 2: Cost ($) and average latency (t) of serving 1
million requests of three ML models in AWS. We choose
c5.large EC2 instance (2 vCPUs and 4GB memory) as it
is the most cost-effective. Each ECS container is allocated
the same vCPUs and memory as c5.large; each Lambda
instance has 3GB memory to achieve comparable latency
with c5.large.

ML Model EC2 ECS Lambda
$ t (ms) $ t (ms) $ t (ms)

Inception-v3 5.0 210 9.17 217 19.0 380
Inception-ResNet 9.3 398 16.4 411 39.3 785
OpenNMT-ende 51.5 2180 96.3 2280 155 3100

common prediction tasks such as image classification and
machine translation, and evaluate their peak inference per-
formance with TensorFlow Serving [66]. Table 2 summarizes
the cost and average latency of serving 1 million requests
using AWS EC2 (IaaS), ECS (CaaS), and Lambda (FaaS),
respectively.2

IaaS vs. CaaS. In EC2 [1], customers can choose among
predefined instance types with fixed vCPUs and memory
allocation. In Table 2, we choose the compute-optimized
instance c5.large as the reference, as it is proven to be the
most cost-effective choice in §3.3. AWS’s container service
ECS [2], on the other hand, lets users choose the number
of vCPUs they want. We allocate each container with 2
vCPUs to match the capacity of c5.large, and with the
minimum memory allowed. Compared with c5.large,
the ECS container has similar serving latency but is more
expensive.

FaaS. As for the serverless computing service Lambda [3],
the pricing is on a per-request basis, and the cost per request
depends on the resource allocation and runtime of the
request. Customers specify memory allocation in Lambda,
and CPU resource is allocated proportionally to memory
[19]. For a fair comparison, we evaluate the Lambda cost
of serving the same amount of requests that c5.large can
serve in an hour, with the maximum memory allocated for
best performance. The cost is significantly higher, and the
latency is longer, too.

Scalability. EC2 has long provisioning overhead (e.g.,
several minutes), because more time is needed to load
and set up large ML model serving in addition to stan-
dard overhead, as Microsoft suggests with their produc-
tion traces [51]. The overhead makes it challenging to ac-
commodate demand surge without high margin of over-
provisioning. The high launching overhead also penalizes
frequent provisioning and deprovisioning, since customers
are billed during the instance launching period as well.
Similar to EC2, ECS also needs dozens of seconds of provi-
sioning overhead. Lambda, on the contrary, is able to spawn
thousands of new ML inference instances in less than a few
seconds, and once an instance is ready, it can continuously
serve requests without incurring additional overhead [59].
The cold start overhead of Lambda can be amortized by
warming up function instances [59]. Compared with EC2
and Lambda, ECS has no obvious advantage.

2. Costs of instances are all based on AWS us-east-1 region.

TABLE 3: The average latency (t) and cost ($) of serving 1
million model inferences with bursted t2 instances.

AWS t2 Instance Size micro small medium large

Inception-v3 t (ms) 268.6 268.3 140.37 142.5
$ 0.87 1.71 1.81 3.75

Inception-ResNet t (ms) 603.0 593.2 311.8 309.8
$ 1.94 3.79 4.01 7.96

OpenNMT-ende t (s) 4.30 4.19 2.20 2.14
$ 13.85 24.83 28.36 56.71

Summary. A natural question is that can we exploit the
cost-effectiveness of IaaS service while also taking advan-
tage of the high scalability of FaaS? Conventional cloud
provisioning schemes have to over-provision because of the
weak scalability of IaaS or CaaS. Now that ML serving is
eligible for the highly scalable FaaS, we can reduce over-
provisioning by combining IaaS and FaaS. The former is
used as the primary serving option, with the latter provid-
ing transient service while new IaaS instances are launching.
Moreover, FaaS can potentially handle the short lasting
demand surges (short spikes), so that the overhead of fre-
quent provisioning and deprovisioning can be eliminated.
Although FaaS is costly, we believe the cost reduction from
less over-provisioning can justify its high price tag.

With IaaS as the primary serving option, we shall deter-
mine how to choose from a bewildering array of instance
families and sizes, which we discuss next.

3.2 IaaS: Can we use burstable instances?

IaaS providers typically categorize instances into vari-
ous families. Within a family, instances share the sim-
ilar physical hardware but may have different sizes in
terms of vCPUs, memory, and network bandwidth. For
CPU instances, EC2 offers four main instance families:
the general-purpose m-family, the compute-optimized
c-family, the burstable t-family, and the memory-
optimized r-family.

Among all instance types, burstable instances
(t-family) have the lowest hourly rate, but they are
aggressively multiplexed on overbooked servers [83], [85].
Burstable instances provide a baseline level (10% in AWS)
of CPU performance with the ability to burst when required
by the workload, yet with limited timespan according
to a throttle policy (a new t2 instance can sustain 100%
utilization for 30 minutes) [30], [31].

We profiled t2 instances’ performance for ML serving,
and the results are summarized in Table 3. We see that the
latency drops proportionally with more vCPUs but adding
more memory does not benefit the inference performance
(e.g., upgrading from micro to small or from medium to
large). Although it seems that t2 instances are of low
cost with viable latency for ML serving, these results are
obtained in the bursted mode and do not sustain for a long
time. Such drawback suggests that burstable instances are
not for compute-intensive services [61].

Summary. While burstable instances are plausible for tran-
sient ML serving usage, they should not be used as the main
long-running resources.
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Fig. 1: The latency (lines) and cost (bars) of serving 1 million
model inference requests with c5 and m5 instances. M1, M2,
and M3 respectively denote Inception-v3, Inception-ResNet,
and OpenNMT-ende. The values are normalized by that of
c5.large (182.5ms with $4.3 for M1; 389ms with $9.4 for
M2; 2.18s with $51.5 for M3).

3.3 IaaS: Big instances or small instances?
We further investigate CPU instance families compute-
optimized c-family and general-purpose m-family,
where we focus on the latest generation c5 and m5. We ex-
clude memory-optimized instances (r-family) from con-
sideration, as our measurements on t2 instances indicate
that 4GB of memory already does not bound the inference
performance. In EC2, the configurations (vCPUs and mem-
ory) and prices of m5 and c5 instances are proportional to
their sizes. So it is important to see how scaling up to larger
instances would affect the ML serving performance.

Figs. 1a and 1b depict the measured latency (lines) and
cost (bars) of serving 1 million inference requests of three
ML models using c5 and m5 instances of different sizes. In
general, c5 instances are cheaper and result in lower latency
than m5 instances because of more advanced CPU models,
even though the latter have larger memory. Our results also
suggest that, for CPU instances of the same family, smaller
instances are more cost-effective, as the serving throughput
grows sub-linearly with the instance size. At the same time,
by scaling from a smaller instance to a bigger one, the
latency drops sub-linearly as well.

Summary. To sum up, smaller instances with advanced
CPU models (c5.large in AWS) are favored as they
achieve higher performance-cost ratio. Moreover, owing to
the finer provisioning granularity, using smaller instances to
serve dynamic workload improves the resource utilization.
Note that the cost analysis presented here is based in on-
demand market. Once we switch to the spot market, the
cost-effectiveness is variable w.r.t. the change of spot price.

3.4 IaaS: How does GPU compare with CPU?
Many high-end IaaS instances are equipped with hardware
accelerators, such as GPU and TPU (exclusive in Google
Cloud), that can be used to speed up ML training and
inference. The questions are: how would those hardware
accelerators improve the latency of ML serving, and if such
performance benefit can justify their high cost? For now, we
focus on GPUs, which are the most accessible and popular
general-purpose ML accelerators. We will extend our study
to TPUs in Google Cloud in §3.5.

A GPU instance is more expensive than a CPU instance,
but it can achieve up to 40× speedup due to its mas-
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Fig. 2: The cost and batch latency of 1 million model in-
ference with batching of various sizes. M1, M2, M3 repre-
sents inception-v3, inception-resnet, and OpenNMT-ende.
The cost and batch latency are normalized by the values
when batch size is set to 1.

sive parallel nature according to NVIDIA [65]. In order to
unleash the full power of its computing capability, it is
essential to batch multiple inference requests and serve them
in one go [80]. Batching benefits the performance in two
ways. First, it amortizes the overhead of operations such
as RPC calls and inter-device memory copy. Second, it can
take advantage of batch operation optimization from both
software and hardware [39], [73].

To disclose the intriguing performance difference be-
tween CPU instances and GPU instances as well as batching,
we compare the inference performance of three ML models
on c5 CPU instances and GPU instances p2.xlarge. We
choose p2.xlarge as it is the smallest GPU instance in
AWS (the next size available is p2.8xlarge which has 8
GPUs and is much more expensive). Fig. 2 shows the cost
and latency of serving 1 million inference requests with
various batch sizes (# of requests served in one batch) on
c5 and p2.xlarge instances. For smaller CPU instances
such as c5.large and c5.xlarge, the serving cost (bars)
and latency improvement (lines) over batching is marginal
(latency growing proportionally as the batch size), whereas
bigger CPU instance (c5.4xlarge) displays certain im-
provement when batch size increases within a small range.
GPU instances, on the other hand, benefit significantly from
batching: the larger the batch, the lower the cost per request.
This phenomenon suggests that batching can significantly
improve the cost-effectiveness of larger CPU instances and
GPU instances.

Serving multiple models on the same GPU is proposed
by Nexus [75] to increase utilization in a pre-allocated
GPU cluster. However, sharing GPUs incurs non-negligible
context-switching overhead [57]. Since we focus on public
cloud where users can choose from a rich selection of
instance types to ensure a high instance utilization, the
context-switching overhead of collocating models may not
be justified as not much spare resources can be utilized on
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the rented instances.

Summary. With an appropriate batch size, GPU instances
can achieve lower per-request cost and shorter inference
latency than CPU instances. However, batch size cannot be
increased arbitrarily as it leads to longer queuing latency
and batch inference latency [39]. We will further discuss the
batching configuration in §4 and formulate the problem in a
latency-aware context.

3.5 Characterization in Google Cloud
So far, all our profiling experiments are based on AWS.
To validate whether our main observations also apply to
ML serving in the other cloud platforms, we extend our
characterization to Google Cloud [47]. Google Cloud offers
similar service and pricing options as AWS. In addition, it
provides Tensor Processing Unit (TPU), the state-of-the-art
ASIC dedicated to high-efficiency ML training.

IaaS remains the best option in Google Cloud. We first
compare the cost and latency performance of ML serving us-
ing Google’s IaaS, CaaS, and FaaS with the same workloads
as in §3.1. All the experiments were run in us-central1
region. Among the three provisioning options, IaaS remains
the best with the lowest cost and shortest latency. For in-
stance, the average latency and total cost of serving 1 million
Inception-v3 requests on an customized IaaS instance with
1 vCPU and 2GB memory are 317ms and $3.70, respectively.
In comparison, it takes 319ms and $4.17 using the cheapest
CaaS instance n1-standard-1 (1 vCPU and 3.75GB mem-
ory), and 527ms and $17.4 using Google Cloud Functions
(FaaS) with 2GB memory.

Small instances offering higher performance-cost ratio.
We then compare the cost and latency performance of
CPU instances of various sizes within the same family. We
made the similar observations as in AWS (§3.3): smaller
instances offer higher performance-cost ratio than the bigger
ones, though the latter leads to shorter latency. In partic-
ular, when serving 1 million Inception-v3 requests with
n1-standard-1, n1-standard-2, and n1-standard-4,
the cost (average latency) ends up with $4.16 (319ms), $7.82
(296ms), and $11.98 (227ms), respectively.

3.6 How about ML ASICs?
Application-specific integrated circuits (ASICs) are deemed
to be the step forward in delivering efficient ML. Premier
cloud providers including Google and Amazon have all
shown interests in developing ASICs for ML. Advanced
ASIC products like TPUs from Google, NPUs from Cam-
bricon [13], DLUs from Fujitsu, NNPs from Intel [25] are all
well received in market. Among these efforts, Google’s TPU
(Tensor Processing Unit) is the front runner. It is the only one
of its kind that is generally available on public cloud. The
TPU, now in its 3rd iteration, is an ASIC built for training
and inference of ML models. TPU benefits from thread par-
allelism like GPUs do, yet it removes any general-purpose
additions in the architecture. TPUs are solely created and
optimized from the ground up for ML, and are special-
ized for high-speed, low-precision floating-point operations.
Compared with GPUs, TPUs are more power-efficient while
achieving substantially better performance.
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Fig. 3: The cost and batch latency of serving 1 million infer-
ence requests with various batch sizes. The batch latencies
are normalized by the latency with no batching.

In order to understand how TPUs can be adopted in
ML serving, we compare the cost and latency performance
of using CPU, GPU, and TPU instances for ML serving
with various batch sizes. We choose two popular image
classification models, Inception-v3 and ResNet50 [54]. The
results are shown in Fig. 3, where we use a customized
CPU instance with 1 vCPU and 2GB memory (CPU), the
same instance with a K80 GPU attached to it (GPU), and
a Cloud TPU-v2 instance (TPU). We observe the similar
trend of cost and latency w.r.t. batch size for CPU and GPU
instances as in AWS (§3.4). As for TPU, we find that its
high price tag does not justify the performance benefit. In
fact, TPU is a massively parallel accelerator optimized for
training throughput rather than inference latency. Note that
in Fig. 3, the batch size for TPU is calculated per core. As
TPUv2 has 8 cores, the device batch size is actually 8 times
the value. The design of TPU calls for large batch sizes
to fully exploit its computing capacity [50]. However, the
stringent latency requirement of real-time inference cannot
wait for large batches to accumulate, leading to extremely
low hardware utilization. In summary, TPUs are designed
with ML training or large-batch offline inference in mind,
thus not suitable for real-time ML serving under our setting.

3.7 How about Dedicated Inference Accelerators?

Compared with training, model inference only performs
forward propagation and has much smaller memory foot-
prints. Exploiting these properties, cloud providers offer
various specialized pieces of hardware optimized for ML
inference. AWS recently offers Elastic Inference (EI) [9]
and Inferentia [10]; Google offers Edge TPU [11]. Unlike
TPUs that are with massive parallelism and optimized
for throughput, these products have moderate computing
power, and are designed specifically to facilitate low-latency
inference tasks. Note that Edge TPUs are designed to be
deployed physically on the edge as opposed to be accessible
on cloud, so it is out of the scope of this paper. Besides
that, to deploy trained models on Edge TPU or Inferentia,
additional compilation processes including quantization are
also needed, which require dedicated software SDK and
may result in a model accuracy drop. Compared with Edge
TPU and Inferentia, AWS EI, released in Spring 2019, is par-
ticularly attractive as it requires no additional engineering to
the trained models. We hence explore the adoption of AWS
EI to exploit the newly available inference accelerators.
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Fig. 4: The inference cost and latency of four models with EI,
regular GPU and CPU instances w.r.t. batch sizes. The batch
latencies are normalized by the latency with no batching.
Some EI medium results are left empty because the evalua-
tion tasks encounter out-of-memory errors.

AWS EI is essentially a service that offers large GPUs
in small units. EI allows users to attach a GPU-powered
inference accelerator to an EC2 or SageMaker instance. EI
accelerators come with three sizes each having different
capped FLOPS performance. Compared with renting stan-
dalone GPU instances, EI enables users to utilize GPU
power for inference in a smaller granularity, meeting the
lower computation demand of inference. The utilization of
EI requires customized versions of ML frameworks, and
some modifications of codes. EI accelerators are connected
to the host machines via network, which has higher over-
head than direct connections such as PCIe.

We conduct EI evaluations on MXNet with the configu-
rations following the official guide [24]. We use the official
MXNet inference benchmark script [12]. Fig. 4 illustrates the
results. For EI, we use c5.xlarge as the host instance, and
test EI accelerators eia1.medium and eia1.large respec-
tively. For baselines, we use GPU instance p2.xlarge and
CPU instance c5.xlarge.

Fig. 4 shows that without batching, EI can achieve com-
parable inference throughput of a standalone GPU instance,
with even lower cost compared with CPU-only instance.
However, EI’s performance does not benefit as much from
batching, and its performance is limited by its small memory
allocation. In fact, with an appropriate batch size, stan-
dalone GPU can significantly outperform EI instances with
similar costs.3 It is worth noticing that in our evaluations,
EI instances incur much longer launching overhead than
regular EC2 instances: it takes more than 20 seconds for an
EI instance to be ready, while a standalone GPU instance
only requires 7.4 seconds. A deep-dive inspection shows
that the high launching overhead of EI instances is caused

3. All the said cost comparisons are calculated in on-demand market.
In fact, EC2 GPU instances can enjoy generous discounts in spot market,
while EI only supports on-demand market at the moment.

by transferring voluminous ML software and models over
the network with limited bandwidth.

Summary. In our evaluations, Elastic Inference shows bal-
anced cost and performance ratio compared with regular
EC2 instances. However, with appropriate batching, stan-
dalone GPU instances can outperform EI. Furthermore, that
EI instances cannot be obtained in spot market renders it
less competitive in price than the regular EC2 instances.

3.8 Characterization Summary
We summarize our key findings as follows: (1) IaaS achieves
the best cost and latency performance for ML model serving,
and combining it with FaaS can potentially reduce over-
provisioning while remaining scalable to spiky workloads.
(2) Burstable instances are viable to cover transient ML
serving demand. (3) In on-demand CPU market, smaller
instances have higher performance-cost ratio than the big-
ger ones, even though the latter provides shorter latency.
(4) Only with appropriate batching can the use of GPU
instances be justifiable to achieve lower cost and shorter
latency than CPU instances.

4 MARK

In this section, we present MArk (Model Ark), a scalable
system that provides cost-effective, SLO-aware ML infer-
ence serving in AWS. While MArk is built in AWS, nothing
prevents our design from being extended to the other cloud
platforms with similar service offerings, such as Google
Cloud and Microsoft Azure.

4.1 Overview
Following our observations in §3, MArk uses EC2 as the
primary means of provisioning ML serving. It also uses
Lambda to quickly cover the service gap when there is a
need to scale out/up. Fig. 5 illustrates the overall archi-
tecture of MArk. In particular, requests from clients are
deposited to a request queue, and are grouped into batches
by the Batch Manager (details in §4.3). MArk periodically
measures the workload metrics, such as the request arrival
rate, and sends them to a Proactive Controller which makes
predictions and plans instances in advance to reduce over-
provisioning (§2.2). The controller then sends the launching
and destroying requests to EC2 instances, on which cus-
tom service backends such as Tensorflow Serving [66] are
hosted. The controller also monitors the health status of all
running instances. With predictive scaling, further actions
are needed to handle prediction errors and unexpected load
spikes. On each running EC2 instance, there is a Bouncer
which monitors serving metrics and performs request ad-
mission control. Whenever there is an incoming request,
Bouncer checks whether its own host instance can finish
the inference within the specified time RTmax. If not, the
Bouncer rejects the request and reroutes it to be handled by
Lambda instances immediately. In addition, MArk employs
an SLO Monitor that keeps track of and maintains the SLO
compliance with the method described in §4.4.

SLO requirements. Following Swayam [51], we set two
SLO requirements for MArk. (1) Response Time Threshold: a
request is deemed fulfilled only if its response time is below
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Fig. 5: An overview of the MArk model serving system.

RTmax. (2) Service Level: the service is considered satisfactory
only if at least SLmin percent of the requests are fulfilled.

4.2 Workload Prediction
MArk employs predictive scaling to reduce over-
provisioning. To expose the long-term cost trade-off be-
tween different instances and resource provisioning, we
need to estimate the maximum request rate in the near
future, which requires multi-step workload prediction. Ex-
isting works employ many well-established resource estima-
tion methods, such as linear regression [36], autoregressive
models [43], [72], and neural networks [26], [64], [68], [77].
As the accuracy of prediction depends on the underlying
workload, there is no universal method that works per-
fectly in all cases. Therefore, MArk exposes an API through
which users can implement their own workload prediction
methods that best fit their applications. The challenge is
how to gracefully handle unavoidable prediction errors and
unexpected load surges.

In this paper, we adopt a vanilla version of long short-
term memory (LSTM) network [46] as an example for multi-
step workload prediction as it is reported to have a gener-
ally good prediction performance [76]. It is worth noting
that in general, it is hard to find a universally optimal
prediction method for all diverse workloads. Users can
replace the LSTM method with other prediction methods
via MArk’s APIs. In this paper we do not focus on finding
the optimal prediction algorithm, but rather demonstrating
the performance and cost benefits when the prediction is
accurate, as well as the effectiveness of using FaaS as a
quick handover approach when the prediction errs. In
our implementation, the prediction unit (time interval) is
Pu, and the prediction window is Pw, meaning that MArk
updates the predicted load for the next PwPu interval every
Pu time units. During each unit, MArk keeps sampling the
arrival rate in consecutive short sample windows of Ps. It
keeps track of the maximum arrival rate of the unit, and
gets the maximum arrival rate array for the next Pw units.
In our evaluations, [Pu, Pw, Ps] is set to [1min, 60, 5sec] with
the following justifications. We set the prediction unit to 1
minute as EC2 charges at least 1 minute for new instances.
We set the prediction window to 60 steps because 1 hour of
future trend is good enough to expose the long term trade-
offs. The sample size is set to 5 seconds, since the arrival rate
can be treated as stable in short time slots [86].

4.3 Instance Provisioning and Batching
We formulate the instance provisioning problem and show
that it is intractable even in a simplified form. We hence turn
to an effective online heuristic algorithm as the solution.

Formulation. Given the diverse cloud service options,
MArk essentially orchestrates a heterogeneous cluster with
fast changing demand. We formulate how to optimally
choose the right instance types and their numbers to serve
dynamic demands. Following the classic web service arrival
analysis, we assume Poisson arrivals for the prediction
requests and formulate a queueing model for the model
servers. At the time of writing, AWS employs a new pric-
ing scheme for spot instances, where the prices no longer
fluctuate constantly but stay relatively stable most of the
time [22]. It is hence safe to presume that the spot price will
not change during our narrow prediction window. Our goal
is to serve all the requests with minimum cost possible while
meeting the SLO requirements.

We start by introducing the notations used in the prob-
lem formulation. Let I be the set of instance types available
for model serving. Let Pi and Oi respectively denote the
instance price per unit time and the launching overhead
(i.e., the incurred cost during the instance launching pe-
riod, which spans from the instance launching time to its
readiness) of instance type i ∈ I . Let λt be the predicted
arrival rate at time step t ∈ T . Let ci be the service rate
capacity of instance type i. We further denote ni,t as the
number of type-i instances running at time t and λi,t the
arrival rate of the request load that is served by instances
of type i. We assume deterministic inference time [86] and
model the running servers of instance type i as an M/D/ci
queue [86], where ci measures the inter-request parallelism.
We formulate the following optimization problem that min-
imizes the instance provisioning cost while meeting the SLO
requirements of the inference workload:

minimize
∑
t∈T

∑
i∈I

[ni,tPi +Oi max (ni,t − ni,t−1, 0)]

subject to
∑
i∈I

λi,t ≥ λt, ∀t ∈ T ;

W
M/D/ci

(
λi,t
ni,t

)
≤ `, ∀i ∈ I, t ∈ T.

We explain our formulation in more detail. The opti-
mization objective (i.e., provisioning cost) consists of two
parts: the overall instance running cost plus the overhead
of launching new instances at each time step. There are
multiple constraints that must be satisfied. The first is the
capacity constraint, meaning that the accumulated capacity
of all running instances must be able to accommodate all
requests in the predictable future. The second is the SLO
constraint, where WM/D/ci is the average latency of in-
stance type i under load λi,t, and ` is the target average
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latency specified in SLO. The solution is to determine how
many instances of type i should be running at each time t,
i.e., finding the decision variable ni,t.

However, we note that such a complex optimization
problem has no closed-form solution even without consid-
ering request batching and instance pricing [86]. Given the
intractability of this problem, we turn to a heuristic solu-
tion: instead of jointly considering batching and instance
provisioning, we solve the two problems separately using
heuristic algorithms.

Batching. Inspired by the adaptive batching in [39], we
introduce two hyperparameters to control the batching be-
havior of an instance type: Wbatch which is the maximum
waiting time window for request batching, and Nbatch

which is the maximum batch size. The Batch Manager
fetches requests from the queue, and submits the batched
requests if either of the two limits is reached (Fig. 5). We
tune the two hyperparameters to meet the following two
requirements: (1) No SLO requirements can be violated,
meaning that the waiting time window and the processing
time of the batch together should be capped by response
time threshold RTmax; (2) the throughput with batching
enabled must be greater than that of no batching. That is,
the waiting time window and the batch processing time
together should be less than the time needed to process all
those requests sequentially without batching.

In practice, hyperparameter tuning requires light pro-
filing for the target instance. We first profile the optimal
processing rate of the target instance without batching,
which we denote by µ∗nb. We then gradually increase the
batch size from 1 until one of the following constraints is
violated:

Wbatch + Tb ≤ RTmax,

Wbatch + Tb ≤
b

µ∗nb
,

where b is the batch size, and Tb is the time needed to
process a batch.

Now that we have the optimal batch sizeNbatch ← b and
the maximum processing rate µ∗ under this configuration,
together with their maximum waiting time window Wbatch,
we can simply treat the target instance as a black box with
processing rate µ∗.

Instance provisioning. We now solve the instance provi-
sioning problem using an online heuristic algorithm that
considers both long-term cost-effectiveness and the launch-
ing overhead, while at the same time attaining high utiliza-
tion of running instances.

We first introduce the notations. Suppose that there are
n types of instances that can be used for serving. At a
given time t0, let R = {r1, r2, · · · , rn} be the set of running
instances and F = (F1, · · · , Fm) the predicted maximum
request arrival rate for the next m steps, where Ft is the
predicted maximum rate in step t. For each instance type i,
let Ci be the instance capacity, measured by the maximum
throughput of a given model (requests per hour). Let Pi be
its unit price and Oi its launching overhead. Finally, let I
be the set of available instance types. Given R, F , I and
the target SLO, our problem is to determine what instances

Algorithm 1 Greedy Algorithm
procedure SCHEDULE(F,R, I, SLO)

S ← S ∪R . Running instances are treated as special ones with
zero launch overhead

for all instance i in S do
if instance i cannot meet SLO requirement then

S = S \ {i} . Remove i from S

if S = ∅ then
Report error . No candidate instance can meet SLO

instance_plan← ∅ . initialize provisioning plan
FILL(F, S, instance_plan)
Launch instances in instance_plan but not in R
Destroy instances in R but not in instance_plan

procedure FILL(F, S, instance_plan)
Csum ← total capacity of all instance i in instance_plan
for t = 1 to m do

Λt = Ft − Csum . Unfulfilled requests predicted at step t
if Λτ ≤ 0 then . Planned capacity is enough at step τ

return
Find the largest e such that there are unfulfilled requests from

steps τ to e, i.e., Λt ≤ 0 for all τ ≤ t ≤ e
min_cost←∞ . Greedily search the instance with the lowest

per-request cost to cover unfilled requests from τ to e
for all instance type i ∈ S do

cost ← (Oi + (e − τ)Pi)/N , where N is the number of
unfulfilled requests that will be served by an instance i in [τ, e]

if cost < min_cost then
min_cost← cost
j ← i

instance_plan← instance_plan ∪ {j}
FILL(F, S, instance_plan)

to launch and which instances to destroy at t0, so as to
minimize the cost while meeting the target SLO.

The challenge of finding the optimal solution in the long
run is how to deal with the running instances at t0. They
may not be the most cost-effective in the next m steps, but
keeping using them avoids additional launching overhead.
We propose a greedy solution in Algorithm 1. Our intuition
is to greedily find the most cost-effective instance from time
period t0 to tm considering both the pay-as-you-go fee and
the launching overhead. The running instances at t0 can be
treated as special ones with zero launching overhead.

In our algorithm, assuming most instances can get ready
in τ time units after launching, we use the predicted load at
t0+τ as the provisioning target, as it is safe to make instance
provisioning decisions τ time units in advance. The values
of τ can be easily adjusted based on the actual scenario.
In our setup, τ is set to 5 minutes, and the scheduling
time unit is set to 1 minute. In this case, the scheduling
decisions are made every minute, targeting the load in 5
minutes. The launching requests should be sent right away
once the instance_plan is ready; the destroying requests, on
the other hand, should be sent after a predefined cool-down
period to ensure better service quality [70].

It is worth mentioning that Algorithm 1 trivially meets
the SLO requirement by ensuring that the latency perfor-
mance of each selected instance comply to the target SLO
individually.

4.4 SLO tracking
The heuristic in Algorithm 1 plans instance capacity based
on predictions. Yet not all demand surges are predictable,
and such surges would result in SLO violations if solely re-
lying on proactive provisioning [70]. To further improve the
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SLO compliance, MArk actively monitors request latency,
and reactively scales the cluster as soon as SLO violations are
detected. MArk constantly checks if the last M requests sat-
isfy the SLO requirements. If not, L instances of type T will
be launched (c5.large by default). All those parameters
can be tuned for specific models and SLO requirements.

4.5 Spot Instance and Lambda Cold Start
Use of spot instances. Note that Algorithm 1 does not
differentiate between on-demand and spot instances which,
if utilized, could further bring down the serving cost due
to its heavy price discount. However, the adoption of spot
instances poses the challenge of instance interruptions. Al-
though the interruption of a spot instance will be notified
2 minutes in advance, it may not be long enough for a
substitute spot instance to get ready. The question is how
can we handle the outstanding requests in the presence of
instance interruptions? AWS Lambda seems to be a viable
choice, but it would result in increased latency and cost.

Our answer to this challenge is the burstable instances.
As shown in §3.2, burstable instances are cheap instances
which can sustain full utilization for about 30 minutes. The
low cost and high peak performance make them a perfect
fit for transient backups in case of short-term interruptions.
Moreover, burstable instances can be resumed from stopped
state in less than 2 minutes thanks to their small sizes.
Therefore, when we use spot instances with MArk, we
reserve a few stopped burstable instances as cold standbys.
Once MArk receives interruption notices, it resumes the
corresponding amount of burstable instances to handle the
transient requests until the regular spot instances capacity
is back to normal, after which those burstable instances are
stopped.

Lambda cold start. Another potential challenge posed to
MArk is the cold start issues of Lambda instances [83].
That is, every time a new Lambda instance is launched, it
needs to load the ML model, framework library and codes
in memory. These operations significantly increases the
inference delay. Nevertheless, cold starts only occur when
the request rate exceeds the concurrency, measured by the
number of currently available lambda instances [41], [85].
Existing benchmarking experiments show that a Lambda
instance is recycled after it stays inactive for 45 to 60
minutes [40]. To understand the potential impact that cold
starts make to MArk, we evaluate the cold start rate with
our workloads described in Section 5. We confirm that
in realistic settings, cloud providers’ keep-warm strategy
can keep cold starts within a tolerable threshold. In our
measurements, with more than 3 million requests, the cold
start rate never exceeds 0.23%. We therefore conclude that
the latency impact of Lambda cold starts is limited. The cost
impact is also negligible. Our profiling with relatively large
computer vision models shows that with $1 we can spin
up 7K inception-v3 Lambda instances, which are capable of
serving more than 20K requests per second. We therefore
do not consider the cost impact of Lambda cold starts in
Algorithm 1.

Despite the limited impacts of Lambda cold start in
ML serving, our implementation employs strategical con-
currency warm-up to further amortize its impact. When a

TABLE 4: ML models and frameworks used in evaluation.

Model Type Framework Size
Inception-v3 Image Classifica-

tion
Tensorflow
Serving

45MB

NASNet Image Classifica-
tion

Keras 343MB

LSTM-ptb Language Model-
ing

MXNet Model
Server

16MB

OpenNMT-
ende

Machine Transla-
tion

Tensorflow
Serving

330MB

potential Lambda request surge is expected, such as spot
interruptions and unexpected workload surges, MArk sends
concurrent pings to Lambda to warm up more instances
as described in [41], such process can be easily adopted
with opensource projects [44]. Furthermore, cloud platforms
are actively working on resolving the cold start issues.
AWS now offers Provisioned Concurrency for Lambda [28],
developers can directly provision the number of function in-
stances in advance. Azure also introduced a similar feature
in its newly introduced premium Function subscription [33].

5 EVALUATION

We have prototyped the proposed MArk system and con-
ducted extensive experimental evaluations on AWS to val-
idate its effectiveness and robustness. We first compare
the performance of MArk using on-demand instances and
spot instances respectively with the premier industrial ML
platform SageMaker against production traces from Twitter.
To ensure MArk’s performance does not mainly rely on
prediction accuracy, we then examine whether MArk is
able to maintain its advantage under unpredictable, highly
bursty workload. After that, we run a few microbenchmarks
to demonstrate the robustness of MArk in terms of handling
spot interruptions, and the ability to handle unexpected
demand surges.

5.1 Evaluation Setup

MArk. We have prototyped MArk on top of Amazon
EC2 and Lambda services in two versions, MArk-ondemand
which only uses on-demand instances, and MArk-spot which
uses spot instances with interruption-tolerant mechanism,
i.e., using burstable servers for smooth transition during
unexpected instance interruption (§4.5).

Testbed. We use AWS as the testbed for conducting ex-
tensive experiments. The types of instance used in our
evaluation include all the c5 and m5 instances as examples
of CPU instances and p2.xlarge instances as an example
of GPU accelerators. In our experiments, we used up to 42
c5 instances, 10 m5 instances, and 12 p2.xlarge instances.

ML models. We use four popular ML models that are
of various sizes and cover diverse domains deployed in
three popular ML serving software frameworks to evaluate
MArk’s performance, which are summarized in Table 4. To
configure the batching of the ML models on EC2 instance,
we performed lightweight profiling following the instruc-
tions detailed in §4.3. The optimal batching hyperparame-
ters Wbatch and Nbatch for p2.xlarge instance found by
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Fig. 6: Snapshots of the arrival process using Twitter and
MMPP with the prediction results of LSTM based algorithm.

our tuning algorithm outlined in §4.3 are 200ms and 8 for
Inception-v3, 750ms and 16 for NASNet, 490ms and 16 for
OpenNMT-ende. For LSTM-ptb, we only performed exper-
iments on CPU as MXNet Model Server does not support
batching at the time of writing. For OpenNMT-ende on
CPU instance, the optimal batching hyperparameter Nbatch

is found to be 2, and Wbatch is set accordingly. For the other
models on CPU instance, we do not use batching as it does
not bring benefits (see Fig. 2).

SLO. Recall that the SLO requirement is specified as at
least SLmin percent of requests must be served in RTmax

time (§4.1). We set SLmin to 98% for all models, and set
RTmax as 600ms, 1000ms, 100ms, and 1400ms for Inception-
v3, NASNet, LSTM-ptb, and OpenNMT-ende respectively.

Workload. In our evaluation, we drive the arrival process
of ML workloads in two different ways. First, as there is no
publicly available traces for ML serving, we synthesize ML
requests based on the tweets traces from Twitter [27]. We
believe that the Twitter traces serve as a good benchmark,
as it represents a popular web service with highly dynamic
load. The trace exhibits typically characteristics of ML in-
ference workloads, containing recurring patterns (e.g., hour
of the day, day of the week) as well as unpredictable load
spikes (e.g., breaking news). In particular, the peak request
rate in the traces is 4 times higher than the valley, a result
of transient demand surges commonly found in industrial-
scale web applications. Fig. 6a(a) illustrates a snapshot of
the trace.

Second, to further evaluate the performance sensitivity
of MArk w.r.t the workload, we synthesize random and
bursty ML request load using Markov-Modulated Poisson pro-
cess (MMPP) [37], [45], [71]. The load generated by MMPP
are highly unpredictable, as the occurrence and duration of
demand surges are completely random, as shown in Fig. 6b.

In summary, we use the Twitter traces to evaluate how
well MArk performs against synthesized real workload that
can be largely predicted. Using MMPP-generated workload,
we stress test MArk’s performance in the presence of fre-
quent, unpredictable load spikes.

Baseline. As discussed in §2.1, existing ML inference sys-
tems mainly focus on enabling inference or scheduling
within pre-allocated private clusters instead of utilizing pro-
visioned cloud resources as MArk does. Consequently, we
use the state-of-the-practice SageMaker [18] as the baseline
for evaluation. SageMaker is AWS’s leading ML training
and hosting system. SageMaker hosting employs AWS’s
new target tracking autoscaling policy [21], [23]. Given the
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Fig. 7: Latency comparison of MArk-ondemand (MO),
MArk-spot (MS), and SageMaker (SM) on 4 ML models
using Twitter workload.

dynamics in request arrival rate (i.e., the arrival rate can
increase more than double in just a few minutes), to ensure
service quality, we follow the AWS guidelines [21] and set
the over-provisioning factor to 2 for SageMaker. We will
show in Fig. 8 that even so the over-provisioning is still
incapable of handling the volatile workload of the Twitter
traces.

5.2 Macrobenchmarks

Workload prediction. For Twitter traces, we use the data
of the first 5 months to train the workload prediction model.
For MMPP-generated arrival process, we use a period of 24-
hour data for training. Fig. 6b demonstrates snapshots of
the prediction results. We see that the prediction accuracy
is in general good for the Twitter traces, yet unsatisfactory
for the MMPP case. Since striving for the best workload
prediction is NOT the focus of this paper, and we mainly use
the LSTM-based algorithm as an example of the pluggable
workload prediction component, we do not provide detailed
evaluation of the prediction algorithm in the interest of
space.

Experimental results using Twitter traces. We first com-
pare MArk-ondemand, MArk-spot, and SageMaker on the
ML models described in §5.1 by feeding the arrival rate
extracted from Twitter traces. The experiments were per-
formed on AWS spanning more than 8 hours each. We
report two metrics: request latency in Fig. 7, and cost
breakdown in Table 5. The request latency is measured as
the time between request arriving at the serving system
and getting response back, while the cost is the charge
billed by AWS. The comparison results suggest that MArk
can significantly reduce both the cost and latency com-
pared with SageMaker. For cost reduction, compared with
SageMaker, MArk-ondemand respectively achieves 3.63×,
2.79×, 2.41×, and 3.15× for the four ML models; MArk-
spot achieves 6.21×, 5.91×, 6.64×, and 7.83×, respectively.
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TABLE 5: Cost ($) comparison of MArk-ondemand (MO),
MArk-spot (MS), and SageMaker (SM) on 4 ML models
using Twitter workload.

Setting Inception-v3 NASNet
MO MS SM MO MS SM

EC2 20.94 9.83 80.98 24.21 10.71 68.1
Lambda 1.34 3.2 NA 0.19 0.81 NA

Total 22.28 13.03 80.98 24.40 11.52 68.1

Setting LSTM-ptb OpenNMT-ende
MO MS SM MO MS SM

EC2 6.17 2.24 14.9 27.54 10.79 87.1
Lambda 0 0.04 NA 0.12 0.33 NA

Total 6.17 2.28 14.9 27.66 11.12 87.1

For latency, MArk-ondemand achieves up to 57% reduction
and MArk-spot achieves up to 60% reduction compared
with SageMaker.

The latency advantage of MArk over SageMaker comes
in three-fold. First, with appropriate batching configuration,
GPU instances can reduce the overall latency by performing
more efficient parallel computation. Second, the SLO-aware
design of MArk helps reduce the queuing delay. In addition,
the predictive scaling and SLO-awareness together form an
efficient hybrid approach that enjoys the benefits in both
proactive and reactive designs. It is worth pointing out the
different performance behaviors between MArk-ondemand
and MArk-spot. As shown in the latency box plots in Fig. 7,
MArk-spot has longer latency tails, since more requests are
handled by Lambda compared with MArk-ondemand, in
case of interruptions. However, the average and median
latencies of MArk-spot are usually the same or even better
than MArk-ondemand. This is because in spot market, the
performance-cost ratio is highly dynamic, which allows
MArk-spot to opportunistically use large instances and GPU
instances at cheaper price than on-demand, leading to better
latency performance.

We have also performed a case study of SLO compli-
ance and report the Complementary Cumulative Distribution
Function (CCDF) of request latency in Fig. 8. As expected,
MArk managed to maintain its compliance with SLO re-
quirements, thanks to the SLO-aware design. SageMaker, on
the other hand, is SLO-oblivious, so the queuing delay adds
up during high arrival periods, and the SLO is violated.

Experimental results using MMPP-generated load. Next
we evaluate MArk using the more challenging, less pre-
dictable MMPP workload. We still use the same four ML
models, and each experiment lasts about 4 hours on AWS. In
the interest of space, we only demonstrate the SLO compli-
ance results in Fig. 8. Fig. 8a shows that the SLO compliance
of SageMaker is significantly degraded from Twitter case
to MMPP case due to the much more dynamic and bursty
behaviors in MMPP. However, MArk can still meet the SLO
requirements even when the workload is highly dynamic
and unpredictable, thanks to the SLO Monitor that can
detect the failure of proactive prediction and timely add
backup machines based on the feedback control algorithm.
Note that we only evaluated SageMaker with MMPP-driven
arrival process on Inception-v3 model as it is too expensive
for us to run all of them. However, given the SLO-oblivious
nature of SageMaker, we expect the behavior would be
similar.
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Fig. 8: CCDF of latency comparison between MArk and
SageMaker. RTmax is drawn as a black dashed vertical line
(the black dashed horizontal line shows the corresponding
CCDF value of RTmax). MRK and SM represents MArk
and SageMaker, while TWT and MP represents Twitter and
MMPP workload respectively.

Sources of improvements. The cost reduction of MArk
comes from several aspects. First, predictive scaling to-
gether with Lambda services bring a more judicious over-
provisioning design that can reduce the cost. For instance,
in the LSTM-ptb model experiments, only CPU instances
are used, thus the source of the 2× cost reduction in MArk-
ondemand over SageMaker mainly comes from the reduced
over-provisioning. Note that although Lambda service used
by MArk is expensive in price, the cost of Lambda can be
well justified by enabling more judicious over-provisioning.
Second, exploiting batching (especially on GPU instances)
further reduces the cost during high demand as the effi-
ciency of computing is improved. For instance, the Open-
NMT results demonstrate the highest cost reduction as
they benefit the most from batching compared with CPU-
only LSTM-ptb (see Fig. 2d). Third, employing interruptible
instances further brings down the cost. MArk-spot reduces
the cost by enjoying the spot market discounts compared
with its on-demand counterpart. It is worth mentioning that
a more accurate workload prediction may improve the cost
reduction of MArk, but even in the worst case scenario
where workloads are unpredictable (like MMPP), MArk can
fallback to an effective reactive scheduling thanks to the
capability of using FaaS for prompt handover and the SLO
monitor. Therefore, MArk provides both SLO guarantee and
substantial cost savings regardless of the workloads and the
prediction algorithm employed.

5.3 Microbenchmarks

In this section, we evaluate the robustness of MArk by
taking a closer look at how MArk handles unexpected
demand surges and spot interruptions.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 04,2020 at 01:40:18 UTC from IEEE Xplore.  Restrictions apply. 



2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.3006751, IEEE
Transactions on Cloud Computing

0 10 20 30

time slot (min)

0

50

100

150

200

250

a
v
e
ra

g
e
 l
a
te

n
c
y
 (

m
s
) 50% MArk

50% SageMaker

(a) 50% surge in 2 min

0 10 20 30

time slot (min)

0

50

100

150

200

250

a
v
e
ra

g
e
 l
a
te

n
c
y
 (

m
s
) 75% SageMaker

75% MArk

(b) 75% surge in 2 min

0 10 20 30

time slot (min)

0

100

200

300

a
v
e
ra

g
e
 l
a
te

n
c
y
 (

m
s
) 100% MArk

100% SageMaker

(c) 100% surge in 2 min

1 3 5 7 9 11 13 15 17 19

time slot (min)

140

160

180

200

220

240

a
v
e
ra

g
e
 l
a
te

n
c
y
 (

m
s
) 40%

20%

80%

(d) spot instance interruption

Fig. 9: Microbenchmark results. (a), (b), (c): The latency
change comparison during unexpected demand surge be-
tween MArk and SageMaker, where the surge starts at the
11th min shown by the dashed line. (d): The latency change
when different percentages of spot instances are interrupted
in MArk-spot, where the interruption notice is received at
the 7th min.

Robustness against unexpected surge. MArk harvests per-
formance and cost benefits by using a judicious over-
provisioning scheme. One important question is whether
MArk can handle unexpected demand surges well in the
presence of unforeseeable flash crowds or poor workload
prediction accuracy. To answer this question, we increase the
request rate for LSTM-ptb serving by 50%, 75%, and 100%
in 2 minutes and compare the latency over time between
MArk and SageMaker in Figs. 9a, 9b, and 9c. 4 Since the
surge is unpredictable, both MArk and SageMaker handle
it reactively. The results suggest that MArk acts faster and
effectively than SageMaker during the unforeseeable surge,
i.e., the increased latency period and amount are much
smaller, thanks to the Lambda-based fallback mechanism,
which can immediately take over and cap the latency to
prevent queue building up like in SageMaker. In addition,
MArk’s SLO Monitor can detect the SLO violations and
issue backup instance requests right away to adapt to the
new arrival rate, while SageMaker is only able to react in
the next scaling cycle.

Robustness against spot interruption. MArk-spot utilizes
spot instances to reduce the cost. However, the interruption
of spot instance can cause performance degradation if not
handled properly. We evaluate MArk-spot by zooming in
the interruption handling periods under different interrup-
tion ratio of instances. We launched a 20-instance Inception-
v3 cluster, and manually interrupted 20%, 40%, and 80%
of the instances respectively. Fig. 9d illustrates the latency
change during the interruption. The interruption happens at
the 7th minute (vertical dashed line), and MArk resumes t2
instances as transient resources upon receiving interruption
notice. The proactive controller then adjusts the provision-

4. Given that we only compare latency here, we show the results of
MArk-spot as the latency results of MArk-ondemand can only be better.

ing plan and requests new instances. At the 13th minute
new spot instances are ready, and the latency goes back to
normal. The average latency drops during transient period
because burstable t2 instances can have temporal boosted
performance as discussed in §3.2. The short latency bump at
the 13th minute is due to the switching overhead (i.e., warm
up of new instances).

To sum up, the results above confirm that MArk can
handle unexpected surge and spot interruption robustly.

6 DISCUSSION

Cloud platform. Our measurements and evaluations in
this paper are mainly based on AWS. However, the main
design of MArk can be generally extended to the other
major cloud platforms, as they offer similar IaaS and FaaS
services, as well as flexible pricing models. Having said that,
some hyperparameters used in the algorithm are platform-
dependent, and must be re-tuned. Also, we have not consid-
ered reserved instances, as they require a long-term usage
commitment. We believe their usage will bring down the
cost of serving stable inference demands in a long run. We
will leave it as a future work.

VM selection. MArk conducts profiling experiments to
identify the most profitable VM instance to use. To speed up
the VM selection process, intelligent methods like Bayesian
optimization [87] and analytical modeling [53] can be em-
ployed.

Large models. In AWS (and other cloud platforms), a
Lambda instance can have no more than 3GB memory,
which may not be sufficient to hold large deep learning
models. A possible solution would be utilizing serverless
workflow services like AWS Step Function. Another possi-
ble solution goes to distributed inference under the model
parallel scheme. We will leave further explorations as a
future work.

Hardware accelerator. We have used the most common
ML accelerator GPU as an example of utilizing hardware
accelerators. We believe that the same batching formulation
can be applied to other accelerators (e.g., FPGA) as they
benefit from batching in a similar manner.

MArk’s architecture requires a centralized master machine
to make provisioning decisions. One natural concern is that
such a centralized design might have poor scalability and
be vulnerable to the single point of failure. Fortunately, as
MArk’s master node only performs lightweight computa-
tions, the potential scalability and reliability problems can
be easily addressed with mature industrial solutions such
as Zookeeper [56], or by deploying the master node on a
dedicated cloud server instead of a VM.

7 CONCLUDING REMARK

In this paper, we have conducted a systematic study of
serving ML models on cloud and concluded that combining
FaaS and IaaS can achieve scalable ML serving with low
over-provisioning cost. Driven by the unique characteristics
of ML model serving, we have proposed MArk, a cost-
effective and SLO-aware ML serving system. We have pro-
totyped MArk on AWS and showed that compared with the
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premier autoscaling ML platform SageMaker, MArk yields
significant cost reduction (up to 7.8×) while complying
with the SLO requirements with even better latency per-
formance.
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